FreshVozdux в Санкт-Петербурге 2-й Муринский проспект, 49
Санкт-Петербург, 2-й Муринский проспект, 49 посмотреть на карте
Пн-Пт: с 8:00 - 20:00 Cб-Вс: с 8:00 - 17:00
тел.: +7 (812) 245-38-29, email: info@freshvozdux.ru, http://freshvozdux.ru
Описание
Интернет – магазин «FreshVozdux.ru» предлагает Вашему вниманию широкий выбор воздухоочистителей от ведущих мировых производителей. Ассортимент магазина представлен самыми известными брендами товаров по очистке воздуха. Мы предлагаем только качественную продукцию, которая прошла все необходимые тестирования и проверки.
На страницах нашего интернет–магазина Вы всегда сможете найти интересующую Вас модель воздухоочистителя, как по техническим характеристикам, так и по ценовым параметрам. Наши цены ниже рыночных, так как мы не являемся посредники при продаже товара. Мы работаем напрямую с нашими поставщиками.
На страницах нашего интернет–магазина Вы всегда сможете найти интересующую Вас модель воздухоочистителя, как по техническим характеристикам, так и по ценовым параметрам. Наши цены ниже рыночных, так как мы не являемся посредники при продаже товара. Мы работаем напрямую с нашими поставщиками.
Отзывы
Местоположение пользователя: Россия
· · jklklp;l;wqqaw
?e(s1, s2, . . . , sm) = X
M0
1
n
s1
1
· · · n
sl
l
.
Aiea?ai ?aaainoai (2.10) aey l m, a i?aaiiei?aiee, ?oi iii aa?ii aey
l ? 1. Ni?aaaaeeau neaao?uea au?a?aiey aey iii?anoa Ml?1 e Ml
Ml?1 = Nl ? {nl nl+1 1}, Ml = Nl ? {nl+1 nl 1}.
2.4 I?iecaiayuea ooieoee aey cia?aiee acaoa-ooieoee 30
Ion?aa iieo?aai ?aaainoai aey iii?anoa Ml?1 = NlMl e, aaeaa, ?aaai-
noai aey ?yaia
X
Ml?1
1
n
s1
1
· · · n
sl
l
=
X
Nl
1
n
s1
1
· · · n
sl
l
?
X
Ml
1
n
s1
1
· · · n
sl
l
= ?(sl
, sl?1, . . . , s1) · ?e(sl+1, sl+2, . . . , sm) ?
X
Ml
1
n
s1
1
· · · n
sl
l
.
Neaaiaaoaeuii,
?e(s1, s2, . . . , sm) = X
l?1
k=1
(?1)k?1
· ?(sk, sk?1, . . . , s1) · ?e(sk+1, sk+2, . . . , sm)
+ (?1)l?1 X
Ml?1
1
n
s1
1
· · · n
sl
l
=
X
l
k=1
(?1)k?1
· ?(sk, sk?1, . . . , s1) · ?e(sk+1, sk+2, . . . , sm)
+ (?1)lX
Ml
1
n
s1
1
· · · n wq
sl
l
,
?oi e o?aaiaaeinu aieacaou. I?e l = m ? 1 ?aaainoai (2.10) ?aaiineeuii
ooaa??aaie? oai?aiu, oae eae
X
Mm?1
1
n
s1
1
· · · n
sl
l
= ?(sm, sm?1, . . . , s1).
Oai?aia aieacaia.
Ia?aeaai oaia?u e aieacaoaeunoao iaiauaiey ?aaainoaa (2.7). Iii ao-
aao ai iiiaii iioi?a ia aieacaoaeunoai Aaneeuaaa ?aaainoaa (2.6) a [2].
Iai iio?aaoaony ianeieuei aniiiiaaoaeuiuo eaii.
Ionou s1 1, s2, . . . , sk iaoo?aeuiua ?enea. Ii?aaaeei ?enea rj = Pj
i=1 si e iiiai?eaiu
Q0 = 1,
Qk(z) = 1 ? zx1 · · · xr1?1 + zx1 · · · xr1 ? . . . ? zx1 · · · xrk?1 + zx1 · · · xrk
,
Qk = Qk(1).
2.4 I?iecaiayuea ooieoee aey cia?aiee acaoa-ooieoee 31
Eaiia 2.7 Auiieiyaony ?aaainoai
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
= ?e(s1, s2, . . . , sk). q
Aieacaoaeunoai. I?eiaiei oai?aio 2.1 e ai = 1, bi = 2
Z
[0,1]rk
dx1dx2 · · · dxm
Qk(z)
=
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
j=1(1 ? zx1 . . . xrj
)
.
A yoii oi?aanoaa ono?aiei z e aaeieoa e ainiieucoainy eaiiie 2.5.
?anniio?ei naiaenoai eioaa?aeia
I? = 1, Is1,s2,...,sk
(?) = Z
[0,1]rk
(1 ? Qk)
?
Qk
dx1 · · · dxrk
, ? 0.
Neaanoaea 2.3 Auiieiyaony ?aaainoai Is1,s2,...,sk = Is1,s2,...,sk
(0) = ?e(s1,
s2, . . . , sk).
Aieacaoaeunoai. Yoi ia?aoi?ioee?iaea eaiiu 2.7.
Neaanoaea 2.4 Ionou ana sj 1. Oiaaa auiieiyaony ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 = ?e(2, {1}s1?2, 2, {1}s2?q2, 2, {1}sk?2, 1).
Aieacaoaeunoai. Eiaai ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 =
Z
[0,1]rk
?
ln(1 ? Qk)
Qk
dx1 · · · dxrk
=
Z
[0,1]rk+1
dx0dx1 · · · dxrk
1 ? x0Qk
Aicii?iinou aeooa?aioe?iaaiey ii ia?aiao?o ? aaao ?aaiiia?iay noi-
aeiinou eioaa?aea
Z
[0,1]rk
ln(1 ? Qk)(1 ? Qk)
?
Qk
?e(s1, s2, . . . , sm) = X
M0
1
n
s1
1
· · · n
sl
l
.
Aiea?ai ?aaainoai (2.10) aey l m, a i?aaiiei?aiee, ?oi iii aa?ii aey
l ? 1. Ni?aaaaeeau neaao?uea au?a?aiey aey iii?anoa Ml?1 e Ml
Ml?1 = Nl ? {nl nl+1 1}, Ml = Nl ? {nl+1 nl 1}.
2.4 I?iecaiayuea ooieoee aey cia?aiee acaoa-ooieoee 30
Ion?aa iieo?aai ?aaainoai aey iii?anoa Ml?1 = NlMl e, aaeaa, ?aaai-
noai aey ?yaia
X
Ml?1
1
n
s1
1
· · · n
sl
l
=
X
Nl
1
n
s1
1
· · · n
sl
l
?
X
Ml
1
n
s1
1
· · · n
sl
l
= ?(sl
, sl?1, . . . , s1) · ?e(sl+1, sl+2, . . . , sm) ?
X
Ml
1
n
s1
1
· · · n
sl
l
.
Neaaiaaoaeuii,
?e(s1, s2, . . . , sm) = X
l?1
k=1
(?1)k?1
· ?(sk, sk?1, . . . , s1) · ?e(sk+1, sk+2, . . . , sm)
+ (?1)l?1 X
Ml?1
1
n
s1
1
· · · n
sl
l
=
X
l
k=1
(?1)k?1
· ?(sk, sk?1, . . . , s1) · ?e(sk+1, sk+2, . . . , sm)
+ (?1)lX
Ml
1
n
s1
1
· · · n wq
sl
l
,
?oi e o?aaiaaeinu aieacaou. I?e l = m ? 1 ?aaainoai (2.10) ?aaiineeuii
ooaa??aaie? oai?aiu, oae eae
X
Mm?1
1
n
s1
1
· · · n
sl
l
= ?(sm, sm?1, . . . , s1).
Oai?aia aieacaia.
Ia?aeaai oaia?u e aieacaoaeunoao iaiauaiey ?aaainoaa (2.7). Iii ao-
aao ai iiiaii iioi?a ia aieacaoaeunoai Aaneeuaaa ?aaainoaa (2.6) a [2].
Iai iio?aaoaony ianeieuei aniiiiaaoaeuiuo eaii.
Ionou s1 1, s2, . . . , sk iaoo?aeuiua ?enea. Ii?aaaeei ?enea rj = Pj
i=1 si e iiiai?eaiu
Q0 = 1,
Qk(z) = 1 ? zx1 · · · xr1?1 + zx1 · · · xr1 ? . . . ? zx1 · · · xrk?1 + zx1 · · · xrk
,
Qk = Qk(1).
2.4 I?iecaiayuea ooieoee aey cia?aiee acaoa-ooieoee 31
Eaiia 2.7 Auiieiyaony ?aaainoai
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
= ?e(s1, s2, . . . , sk). q
Aieacaoaeunoai. I?eiaiei oai?aio 2.1 e ai = 1, bi = 2
Z
[0,1]rk
dx1dx2 · · · dxm
Qk(z)
=
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
j=1(1 ? zx1 . . . xrj
)
.
A yoii oi?aanoaa ono?aiei z e aaeieoa e ainiieucoainy eaiiie 2.5.
?anniio?ei naiaenoai eioaa?aeia
I? = 1, Is1,s2,...,sk
(?) = Z
[0,1]rk
(1 ? Qk)
?
Qk
dx1 · · · dxrk
, ? 0.
Neaanoaea 2.3 Auiieiyaony ?aaainoai Is1,s2,...,sk = Is1,s2,...,sk
(0) = ?e(s1,
s2, . . . , sk).
Aieacaoaeunoai. Yoi ia?aoi?ioee?iaea eaiiu 2.7.
Neaanoaea 2.4 Ionou ana sj 1. Oiaaa auiieiyaony ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 = ?e(2, {1}s1?2, 2, {1}s2?q2, 2, {1}sk?2, 1).
Aieacaoaeunoai. Eiaai ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 =
Z
[0,1]rk
?
ln(1 ? Qk)
Qk
dx1 · · · dxrk
=
Z
[0,1]rk+1
dx0dx1 · · · dxrk
1 ? x0Qk
Aicii?iinou aeooa?aioe?iaaiey ii ia?aiao?o ? aaao ?aaiiia?iay noi-
aeiinou eioaa?aea
Z
[0,1]rk
ln(1 ? Qk)(1 ? Qk)
?
Qk
ывфв
07.07.2017 17:26
Местоположение пользователя: Россия, Москва Qk = Qk(1).
2.4 I?iecaiayuea ooieoee aey cia?aiee acaoa-ooieoee 31
Eaiia 2.7 Auiieiyaony ?aaainoai
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
= ?e(s1, s2, . . . , sk). q
Aieacaoaeunoai. I?eiaiei oai?aio 2.1 e ai = 1, bi = 2
Z
[0,1]rk
dx1dx2 · · · dxm
Qk(z)
=
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
j=1(1 ? zx1 . . . xrj
)
.
A yoii oi?aanoaa ono?aiei z e aaeieoa e ainiieucoainy eaiiie 2.5.
?anniio?ei naiaenoai eioaa?aeia
I? = 1, Is1,s2,...,sk
(?) = Z
[0,1]rk
(1 ? Qk)
?
Qk
dx1 · · · dxrk
, ? 0.
Neaanoaea 2.3 Auiieiyaony ?aaainoai Is1,s2,...,sk = Is1,s2,...,sk
(0) = ?e(s1,
s2, . . . , sk).
Aieacaoaeunoai. Yoi ia?aoi?ioee?iaea eaiiu 2.7.
Neaanoaea 2.4 Ionou ana sj 1. Oiaaa auiieiyaony ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 = ?e(2, {1}s1?2, 2, {1}s2?q2, 2, {1}sk?2, 1).
Aieacaoaeunoai. Eiaai ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 =
Z
[0,1]rk
?
ln(1 ? Qk)
Qk
dx1 · · · dxrk
=
Z
[0,1]rk+1
dx0dx1 · · · dxrk
1 ? x0Qk
Aicii?iinou aeooa?aioe?iaaiey ii ia?aiao?o ? aaao ?aaiiia?iay noi-
aeiinou eioaa?aea
Z
[0,1]rk
ln(1 ? Qk)(1 ? Qk)
?
Qk
Местоположение пользователя: Россия, Москва Qk = Qk(1).
2.4 I?iecaiayuea ooieoee aey cia?aiee acaoa-ooieoee 31
Eaiia 2.7 Auiieiyaony ?aaainoai
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
= ?e(s1, s2, . . . , sk). q
Aieacaoaeunoai. I?eiaiei oai?aio 2.1 e ai = 1, bi = 2
Z
[0,1]rk
dx1dx2 · · · dxm
Qk(z)
=
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
j=1(1 ? zx1 . . . xrj
)
.
A yoii oi?aanoaa ono?aiei z e aaeieoa e ainiieucoainy eaiiie 2.5.
?anniio?ei naiaenoai eioaa?aeia
I? = 1, Is1,s2,...,sk
(?) = Z
[0,1]rk
(1 ? Qk)
?
Qk
dx1 · · · dxrk
, ? 0.
Neaanoaea 2.3 Auiieiyaony ?aaainoai Is1,s2,...,sk = Is1,s2,...,sk
(0) = ?e(s1,
s2, . . . , sk).
Aieacaoaeunoai. Yoi ia?aoi?ioee?iaea eaiiu 2.7.
Neaanoaea 2.4 Ionou ana sj 1. Oiaaa auiieiyaony ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 = ?e(2, {1}s1?2, 2, {1}s2?q2, 2, {1}sk?2, 1).
Aieacaoaeunoai. Eiaai ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 =
Z
[0,1]rk
?
ln(1 ? Qk)
Qk
dx1 · · · dxrk
=
Z
[0,1]rk+1
dx0dx1 · · · dxrk
1 ? x0Qk
Aicii?iinou aeooa?aioe?iaaiey ii ia?aiao?o ? aaao ?aaiiia?iay noi-
aeiinou eioaa?aea
Z
[0,1]rk
ln(1 ? Qk)(1 ? Qk)
?
Qk
oioi
07.07.2017 17:28
Местоположение пользователя: Россия, Москва Qk = Qk(1).
2.4 I?iecaiayuea ooieoee aey cia?aiee acaoa-ooieoee 31
Eaiia 2.7 Auiieiyaony ?aaainoai
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
= ?e(s1, s2, . . . , sk). q
Aieacaoaeunoai. I?eiaiei oai?aio 2.1 e ai = 1, bi = 2
Z
[0,1]rk
dx1dx2 · · · dxm
Qk(z)
=
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
j=1(1 ? zx1 . . . xrj
)
.
A yoii oi?aanoaa ono?aiei z e aaeieoa e ainiieucoainy eaiiie 2.5.
?anniio?ei naiaenoai eioaa?aeia
I? = 1, Is1,s2,...,sk
(?) = Z
[0,1]rk
(1 ? Qk)
?
Qk
dx1 · · · dxrk
, ? 0.
Neaanoaea 2.3 Auiieiyaony ?aaainoai Is1,s2,...,sk = Is1,s2,...,sk
(0) = ?e(s1,
s2, . . . , sk).
Aieacaoaeunoai. Yoi ia?aoi?ioee?iaea eaiiu 2.7.
Neaanoaea 2.4 Ionou ana sj 1. Oiaaa auiieiyaony ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 = ?e(2, {1}s1?2, 2, {1}s2?q2, 2, {1}sk?2, 1).
Aieacaoaeunoai. Eiaai ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 =
Z
[0,1]rk
?
ln(1 ? Qk)
Qk
dx1 · · · dxrk
=
Z
[0,1]rk+1
dx0dx1 · · · dxrk
1 ? x0Qk
Aicii?iinou aeooa?aioe?iaaiey ii ia?aiao?o ? aaao ?aaiiia?iay noi-
aeiinou eioaa?aea
Z
[0,1]rk
ln(1 ? Qk)(1 ? Qk)
?
Qk
Qk = Qk(1).
2.4 I?iecaiayuea ooieoee aey cia?aiee acaoa-ooieoee 31
Eaiia 2.7 Auiieiyaony ?aaainoai
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
= ?e(s1, s2, . . . , sk). q
Aieacaoaeunoai. I?eiaiei oai?aio 2.1 e ai = 1, bi = 2
Z
[0,1]rk
dx1dx2 · · · dxm
Qk(z)
=
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
j=1(1 ? zx1 . . . xrj
)
.
A yoii oi?aanoaa ono?aiei z e aaeieoa e ainiieucoainy eaiiie 2.5.
?anniio?ei naiaenoai eioaa?aeia
I? = 1, Is1,s2,...,sk
(?) = Z
[0,1]rk
(1 ? Qk)
?
Qk
dx1 · · · dxrk
, ? 0.
Neaanoaea 2.3 Auiieiyaony ?aaainoai Is1,s2,...,sk = Is1,s2,...,sk
(0) = ?e(s1,
s2, . . . , sk).
Aieacaoaeunoai. Yoi ia?aoi?ioee?iaea eaiiu 2.7.
Neaanoaea 2.4 Ionou ana sj 1. Oiaaa auiieiyaony ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 = ?e(2, {1}s1?2, 2, {1}s2?q2, 2, {1}sk?2, 1).
Aieacaoaeunoai. Eiaai ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 =
Z
[0,1]rk
?
ln(1 ? Qk)
Qk
dx1 · · · dxrk
=
Z
[0,1]rk+1
dx0dx1 · · · dxrk
1 ? x0Qk
Aicii?iinou aeooa?aioe?iaaiey ii ia?aiao?o ? aaao ?aaiiia?iay noi-
aeiinou eioaa?aea
Z
[0,1]rk
ln(1 ? Qk)(1 ? Qk)
?
Qk
Qk = Qk(1).
2.4 I?iecaiayuea ooieoee aey cia?aiee acaoa-ooieoee 31
Eaiia 2.7 Auiieiyaony ?aaainoai
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
= ?e(s1, s2, . . . , sk). q
Aieacaoaeunoai. I?eiaiei oai?aio 2.1 e ai = 1, bi = 2
Z
[0,1]rk
dx1dx2 · · · dxm
Qk(z)
=
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
j=1(1 ? zx1 . . . xrj
)
.
A yoii oi?aanoaa ono?aiei z e aaeieoa e ainiieucoainy eaiiie 2.5.
?anniio?ei naiaenoai eioaa?aeia
I? = 1, Is1,s2,...,sk
(?) = Z
[0,1]rk
(1 ? Qk)
?
Qk
dx1 · · · dxrk
, ? 0.
Neaanoaea 2.3 Auiieiyaony ?aaainoai Is1,s2,...,sk = Is1,s2,...,sk
(0) = ?e(s1,
s2, . . . , sk).
Aieacaoaeunoai. Yoi ia?aoi?ioee?iaea eaiiu 2.7.
Neaanoaea 2.4 Ionou ana sj 1. Oiaaa auiieiyaony ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 = ?e(2, {1}s1?2, 2, {1}s2?q2, 2, {1}sk?2, 1).
Aieacaoaeunoai. Eiaai ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 =
Z
[0,1]rk
?
ln(1 ? Qk)
Qk
dx1 · · · dxrk
=
Z
[0,1]rk+1
dx0dx1 · · · dxrk
1 ? x0Qk
Aicii?iinou aeooa?aioe?iaaiey ii ia?aiao?o ? aaao ?aaiiia?iay noi-
aeiinou eioaa?aea
Z
[0,1]rk
ln(1 ? Qk)(1 ? Qk)
?
Qk
Qk = Qk(1).
2.4 I?iecaiayuea ooieoee aey cia?aiee acaoa-ooieoee 31
Eaiia 2.7 Auiieiyaony ?aaainoai
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
= ?e(s1, s2, . . . , sk). q
Aieacaoaeunoai. I?eiaiei oai?aio 2.1 e ai = 1, bi = 2
Z
[0,1]rk
dx1dx2 · · · dxm
Qk(z)
=
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
j=1(1 ? zx1 . . . xrj
)
.
A yoii oi?aanoaa ono?aiei z e aaeieoa e ainiieucoainy eaiiie 2.5.
?anniio?ei naiaenoai eioaa?aeia
I? = 1, Is1,s2,...,sk
(?) = Z
[0,1]rk
(1 ? Qk)
?
Qk
dx1 · · · dxrk
, ? 0.
Neaanoaea 2.3 Auiieiyaony ?aaainoai Is1,s2,...,sk = Is1,s2,...,sk
(0) = ?e(s1,
s2, . . . , sk).
Aieacaoaeunoai. Yoi ia?aoi?ioee?iaea eaiiu 2.7.
Neaanoaea 2.4 Ionou ana sj 1. Oiaaa auiieiyaony ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 = ?e(2, {1}s1?2, 2, {1}s2?q2, 2, {1}sk?2, 1).
Aieacaoaeunoai. Eiaai ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 =
Z
[0,1]rk
?
ln(1 ? Qk)
Qk
dx1 · · · dxrk
=
Z
[0,1]rk+1
dx0dx1 · · · dxrk
1 ? x0Qk
Aicii?iinou aeooa?aioe?iaaiey ii ia?aiao?o ? aaao ?aaiiia?iay noi-
aeiinou eioaa?aea
Z
[0,1]rk
ln(1 ? Qk)(1 ? Qk)
?
Qk
Местоположение пользователя: Россия, Москва Qk = Qk(1).
2.4 I?iecaiayuea ooieoee aey cia?aiee acaoa-ooieoee 31
Eaiia 2.7 Auiieiyaony ?aaainoai
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
= ?e(s1, s2, . . . , sk). q
Aieacaoaeunoai. I?eiaiei oai?aio 2.1 e ai = 1, bi = 2
Z
[0,1]rk
dx1dx2 · · · dxm
Qk(z)
=
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
j=1(1 ? zx1 . . . xrj
)
.
A yoii oi?aanoaa ono?aiei z e aaeieoa e ainiieucoainy eaiiie 2.5.
?anniio?ei naiaenoai eioaa?aeia
I? = 1, Is1,s2,...,sk
(?) = Z
[0,1]rk
(1 ? Qk)
?
Qk
dx1 · · · dxrk
, ? 0.
Neaanoaea 2.3 Auiieiyaony ?aaainoai Is1,s2,...,sk = Is1,s2,...,sk
(0) = ?e(s1,
s2, . . . , sk).
Aieacaoaeunoai. Yoi ia?aoi?ioee?iaea eaiiu 2.7.
Neaanoaea 2.4 Ionou ana sj 1. Oiaaa auiieiyaony ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 = ?e(2, {1}s1?2, 2, {1}s2?q2, 2, {1}sk?2, 1).
Aieacaoaeunoai. Eiaai ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 =
Z
[0,1]rk
?
ln(1 ? Qk)
Qk
dx1 · · · dxrk
=
Z
[0,1]rk+1
dx0dx1 · · · dxrk
1 ? x0Qk
Aicii?iinou aeooa?aioe?iaaiey ii ia?aiao?o ? aaao ?aaiiia?iay noi-
aeiinou eioaa?aea
Z
[0,1]rk
ln(1 ? Qk)(1 ? Qk)
?
Qk
Qk = Qk(1).
2.4 I?iecaiayuea ooieoee aey cia?aiee acaoa-ooieoee 31
Eaiia 2.7 Auiieiyaony ?aaainoai
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
= ?e(s1, s2, . . . , sk). q
Aieacaoaeunoai. I?eiaiei oai?aio 2.1 e ai = 1, bi = 2
Z
[0,1]rk
dx1dx2 · · · dxm
Qk(z)
=
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
j=1(1 ? zx1 . . . xrj
)
.
A yoii oi?aanoaa ono?aiei z e aaeieoa e ainiieucoainy eaiiie 2.5.
?anniio?ei naiaenoai eioaa?aeia
I? = 1, Is1,s2,...,sk
(?) = Z
[0,1]rk
(1 ? Qk)
?
Qk
dx1 · · · dxrk
, ? 0.
Neaanoaea 2.3 Auiieiyaony ?aaainoai Is1,s2,...,sk = Is1,s2,...,sk
(0) = ?e(s1,
s2, . . . , sk).
Aieacaoaeunoai. Yoi ia?aoi?ioee?iaea eaiiu 2.7.
Neaanoaea 2.4 Ionou ana sj 1. Oiaaa auiieiyaony ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 = ?e(2, {1}s1?2, 2, {1}s2?q2, 2, {1}sk?2, 1).
Aieacaoaeunoai. Eiaai ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 =
Z
[0,1]rk
?
ln(1 ? Qk)
Qk
dx1 · · · dxrk
=
Z
[0,1]rk+1
dx0dx1 · · · dxrk
1 ? x0Qk
Aicii?iinou aeooa?aioe?iaaiey ii ia?aiao?o ? aaao ?aaiiia?iay noi-
aeiinou eioaa?aea
Z
[0,1]rk
ln(1 ? Qk)(1 ? Qk)
?
Qk
Qk = Qk(1).
2.4 I?iecaiayuea ooieoee aey cia?aiee acaoa-ooieoee 31
Eaiia 2.7 Auiieiyaony ?aaainoai
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
= ?e(s1, s2, . . . , sk). q
Aieacaoaeunoai. I?eiaiei oai?aio 2.1 e ai = 1, bi = 2
Z
[0,1]rk
dx1dx2 · · · dxm
Qk(z)
=
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
j=1(1 ? zx1 . . . xrj
)
.
A yoii oi?aanoaa ono?aiei z e aaeieoa e ainiieucoainy eaiiie 2.5.
?anniio?ei naiaenoai eioaa?aeia
I? = 1, Is1,s2,...,sk
(?) = Z
[0,1]rk
(1 ? Qk)
?
Qk
dx1 · · · dxrk
, ? 0.
Neaanoaea 2.3 Auiieiyaony ?aaainoai Is1,s2,...,sk = Is1,s2,...,sk
(0) = ?e(s1,
s2, . . . , sk).
Aieacaoaeunoai. Yoi ia?aoi?ioee?iaea eaiiu 2.7.
Neaanoaea 2.4 Ionou ana sj 1. Oiaaa auiieiyaony ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 = ?e(2, {1}s1?2, 2, {1}s2?q2, 2, {1}sk?2, 1).
Aieacaoaeunoai. Eiaai ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 =
Z
[0,1]rk
?
ln(1 ? Qk)
Qk
dx1 · · · dxrk
=
Z
[0,1]rk+1
dx0dx1 · · · dxrk
1 ? x0Qk
Aicii?iinou aeooa?aioe?iaaiey ii ia?aiao?o ? aaao ?aaiiia?iay noi-
aeiinou eioaa?aea
Z
[0,1]rk
ln(1 ? Qk)(1 ? Qk)
?
Qk
Qk = Qk(1).
2.4 I?iecaiayuea ooieoee aey cia?aiee acaoa-ooieoee 31
Eaiia 2.7 Auiieiyaony ?aaainoai
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
= ?e(s1, s2, . . . , sk). q
Aieacaoaeunoai. I?eiaiei oai?aio 2.1 e ai = 1, bi = 2
Z
[0,1]rk
dx1dx2 · · · dxm
Qk(z)
=
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
j=1(1 ? zx1 . . . xrj
)
.
A yoii oi?aanoaa ono?aiei z e aaeieoa e ainiieucoainy eaiiie 2.5.
?anniio?ei naiaenoai eioaa?aeia
I? = 1, Is1,s2,...,sk
(?) = Z
[0,1]rk
(1 ? Qk)
?
Qk
dx1 · · · dxrk
, ? 0.
Neaanoaea 2.3 Auiieiyaony ?aaainoai Is1,s2,...,sk = Is1,s2,...,sk
(0) = ?e(s1,
s2, . . . , sk).
Aieacaoaeunoai. Yoi ia?aoi?ioee?iaea eaiiu 2.7.
Neaanoaea 2.4 Ionou ana sj 1. Oiaaa auiieiyaony ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 = ?e(2, {1}s1?2, 2, {1}s2?q2, 2, {1}sk?2, 1).
Aieacaoaeunoai. Eiaai ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 =
Z
[0,1]rk
?
ln(1 ? Qk)
Qk
dx1 · · · dxrk
=
Z
[0,1]rk+1
dx0dx1 · · · dxrk
1 ? x0Qk
Aicii?iinou aeooa?aioe?iaaiey ii ia?aiao?o ? aaao ?aaiiia?iay noi-
aeiinou eioaa?aea
Z
[0,1]rk
ln(1 ? Qk)(1 ? Qk)
?
Qk
Местоположение пользователя: Россия, Серпухов
Лохотрон. Привлекательные цены на все, но все равно будут впаривать FINAIR. По другим придет СМС что нет на складе. Что такое FINAIR никто не знает, похоже коробка с вентилятором. Манагер нес полнейшую пургу, когда переходил к деталям этого финского чуда ))
Местоположение пользователя: Россия, Самара
Купил данный очиститель воздуха в интернет магазине http://freshvozdux.ru/ в описании написано, что он состоит из 3 фильтров (Honeycomb Filter System, HEPA 14, Угольный фильтр) в реалии Какой-то бумажный и непонятно что. Одним словом развод . ЛОХОТРОН !ДЕНЬГИ НЕ ВОЗВРАЩАЮТ. На звонки не отвечают.
Местоположение пользователя: Россия, Орёл
Дочери в квартиру в Санкт-Петербурге покупали воздухоочиститель черех эту компанию. Я сам мониторил фирмы, которые занимаются продажей и установкой. Выбрал FreshVozdux. Здесь были самые оптимальные сроки доставки и установки + гарантия и адекватная цена. Моделей очень много, здесь, наверное, все самые известные бренды собраны. У дочери TEFAL INTENSE PURE AIR PU4015. Все супер.
Местоположение пользователя: Россия
FreshVozdux мне знаком. Я конце прошлого года через него я покупал себе в квартиру климатическую систему для очищения и увлажнения воздуха. У нас в семье родился ребенок, поэтому мы стали более трепетно относится ко всему, что его окружает. Это касается и воздуха. Тем более, в детской должна быть особая температура. Эта система отлично справляется с поддержанием тепла и фильтрацией. Довольны.
Ближайшие Электроника и бытовая техника в Санкт-Петербурге
г. Санкт-Петербург
Тел.: 8 (800) 555-95-41, +7 (812) 309-36-18
Метро: Лесная
Сайт:
https://conrad.ru/
г. Санкт-Петербург
Тел.: +7 (812) 988-02-50
Метро: Удельная
Сайт:
https://detail-express.ru/
г. Санкт-Петербург
Тел.: 8 (812) 407 77 28
Метро: Лесная
Сайт:
http://www.megador.ru
Лучшие Электроника и бытовая техника в Санкт-Петербурге
г. Санкт-Петербург
Тел.: + 7 (812) 988-87-48, + 7 (812) 993-87-08
Метро: Лиговский проспект
Сайт:
http://lengas.ru
г. Санкт-Петербург
Тел.: +78123094016
Метро: Гражданский проспект
Сайт:
https://ps-link.ru/
г. Санкт-Петербург
Тел.: 8 (812) 385 76 95
Метро: Проспект Просвещения
Сайт:
http://www.tehnika4u.ru
Местоположение пользователя: Россия, Москва
?e(s1, s2, . . . , sm) = X
M0
1
n
s1
1
· · · n
sl
l
.
Aiea?ai ?aaainoai (2.10) aey l m, a i?aaiiei?aiee, ?oi iii aa?ii aey
l ? 1. Ni?aaaaeeau neaao?uea au?a?aiey aey iii?anoa Ml?1 e Ml
Ml?1 = Nl ? {nl nl+1 1}, Ml = Nl ? {nl+1 nl 1}.
2.4 I?iecaiayuea ooieoee aey cia?aiee acaoa-ooieoee 30
Ion?aa iieo?aai ?aaainoai aey iii?anoa Ml?1 = NlMl e, aaeaa, ?aaai-
noai aey ?yaia
X
Ml?1
1
n
s1
1
· · · n
sl
l
=
X
Nl
1
n
s1
1
· · · n
sl
l
?
X
Ml
1
n
s1
1
· · · n
sl
l
= ?(sl
, sl?1, . . . , s1) · ?e(sl+1, sl+2, . . . , sm) ?
X
Ml
1
n
s1
1
· · · n
sl
l
.
Neaaiaaoaeuii,
?e(s1, s2, . . . , sm) = X
l?1
k=1
(?1)k?1
· ?(sk, sk?1, . . . , s1) · ?e(sk+1, sk+2, . . . , sm)
+ (?1)l?1 X
Ml?1
1
n
s1
1
· · · n
sl
l
=
X
l
k=1
(?1)k?1
· ?(sk, sk?1, . . . , s1) · ?e(sk+1, sk+2, . . . , sm)
+ (?1)lX
Ml
1
n
s1
1
· · · n wq
sl
l
,
?oi e o?aaiaaeinu aieacaou. I?e l = m ? 1 ?aaainoai (2.10) ?aaiineeuii
ooaa??aaie? oai?aiu, oae eae
X
Mm?1
1
n
s1
1
· · · n
sl
l
= ?(sm, sm?1, . . . , s1).
Oai?aia aieacaia.
Ia?aeaai oaia?u e aieacaoaeunoao iaiauaiey ?aaainoaa (2.7). Iii ao-
aao ai iiiaii iioi?a ia aieacaoaeunoai Aaneeuaaa ?aaainoaa (2.6) a [2].
Iai iio?aaoaony ianeieuei aniiiiaaoaeuiuo eaii.
Ionou s1 1, s2, . . . , sk iaoo?aeuiua ?enea. Ii?aaaeei ?enea rj = Pj
i=1 si e iiiai?eaiu
Q0 = 1,
Qk(z) = 1 ? zx1 · · · xr1?1 + zx1 · · · xr1 ? . . . ? zx1 · · · xrk?1 + zx1 · · · xrk
,
Qk = Qk(1).
2.4 I?iecaiayuea ooieoee aey cia?aiee acaoa-ooieoee 31
Eaiia 2.7 Auiieiyaony ?aaainoai
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
= ?e(s1, s2, . . . , sk). q
Aieacaoaeunoai. I?eiaiei oai?aio 2.1 e ai = 1, bi = 2
Z
[0,1]rk
dx1dx2 · · · dxm
Qk(z)
=
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
j=1(1 ? zx1 . . . xrj
)
.
A yoii oi?aanoaa ono?aiei z e aaeieoa e ainiieucoainy eaiiie 2.5.
?anniio?ei naiaenoai eioaa?aeia
I? = 1, Is1,s2,...,sk
(?) = Z
[0,1]rk
(1 ? Qk)
?
Qk
dx1 · · · dxrk
, ? 0.
Neaanoaea 2.3 Auiieiyaony ?aaainoai Is1,s2,...,sk = Is1,s2,...,sk
(0) = ?e(s1,
s2, . . . , sk).
Aieacaoaeunoai. Yoi ia?aoi?ioee?iaea eaiiu 2.7.
Neaanoaea 2.4 Ionou ana sj 1. Oiaaa auiieiyaony ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 = ?e(2, {1}s1?2, 2, {1}s2?q2, 2, {1}sk?2, 1).
Aieacaoaeunoai. Eiaai ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 =
Z
[0,1]rk
?
ln(1 ? Qk)
Qk
dx1 · · · dxrk
=
Z
[0,1]rk+1
dx0dx1 · · · dxrk
1 ? x0Qk
Aicii?iinou aeooa?aioe?iaaiey ii ia?aiao?o ? aaao ?aaiiia?iay noi-
aeiinou eioaa?aea
Z
[0,1]rk
ln(1 ? Qk)(1 ? Qk)
?
Qk · · jklklp;l;wqqaw
?e(s1, s2, . . . , sm) = X
M0
1
n
s1
1
· · · n
sl
l
.
Aiea?ai ?aaainoai (2.10) aey l m, a i?aaiiei?aiee, ?oi iii aa?ii aey
l ? 1. Ni?aaaaeeau neaao?uea au?a?aiey aey iii?anoa Ml?1 e Ml
Ml?1 = Nl ? {nl nl+1 1}, Ml = Nl ? {nl+1 nl 1}.
2.4 I?iecaiayuea ooieoee aey cia?aiee acaoa-ooieoee 30
Ion?aa iieo?aai ?aaainoai aey iii?anoa Ml?1 = NlMl e, aaeaa, ?aaai-
noai aey ?yaia
X
Ml?1
1
n
s1
1
· · · n
sl
l
=
X
Nl
1
n
s1
1
· · · n
sl
l
?
X
Ml
1
n
s1
1
· · · n
sl
l
= ?(sl
, sl?1, . . . , s1) · ?e(sl+1, sl+2, . . . , sm) ?
X
Ml
1
n
s1
1
· · · n
sl
l
.
Neaaiaaoaeuii,
?e(s1, s2, . . . , sm) = X
l?1
k=1
(?1)k?1
· ?(sk, sk?1, . . . , s1) · ?e(sk+1, sk+2, . . . , sm)
+ (?1)l?1 X
Ml?1
1
n
s1
1
· · · n
sl
l
=
X
l
k=1
(?1)k?1
· ?(sk, sk?1, . . . , s1) · ?e(sk+1, sk+2, . . . , sm)
+ (?1)lX
Ml
1
n
s1
1
· · · n wq
sl
l
,
?oi e o?aaiaaeinu aieacaou. I?e l = m ? 1 ?aaainoai (2.10) ?aaiineeuii
ooaa??aaie? oai?aiu, oae eae
X
Mm?1
1
n
s1
1
· · · n
sl
l
= ?(sm, sm?1, . . . , s1).
Oai?aia aieacaia.
Ia?aeaai oaia?u e aieacaoaeunoao iaiauaiey ?aaainoaa (2.7). Iii ao-
aao ai iiiaii iioi?a ia aieacaoaeunoai Aaneeuaaa ?aaainoaa (2.6) a [2].
Iai iio?aaoaony ianeieuei aniiiiaaoaeuiuo eaii.
Ionou s1 1, s2, . . . , sk iaoo?aeuiua ?enea. Ii?aaaeei ?enea rj = Pj
i=1 si e iiiai?eaiu
Q0 = 1,
Qk(z) = 1 ? zx1 · · · xr1?1 + zx1 · · · xr1 ? . . . ? zx1 · · · xrk?1 + zx1 · · · xrk
,
Qk = Qk(1).
2.4 I?iecaiayuea ooieoee aey cia?aiee acaoa-ooieoee 31
Eaiia 2.7 Auiieiyaony ?aaainoai
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
= ?e(s1, s2, . . . , sk). q
Aieacaoaeunoai. I?eiaiei oai?aio 2.1 e ai = 1, bi = 2
Z
[0,1]rk
dx1dx2 · · · dxm
Qk(z)
=
Z
[0,1]rk
dx1dx2 · · · dxm
Qk
j=1(1 ? zx1 . . . xrj
)
.
A yoii oi?aanoaa ono?aiei z e aaeieoa e ainiieucoainy eaiiie 2.5.
?anniio?ei naiaenoai eioaa?aeia
I? = 1, Is1,s2,...,sk
(?) = Z
[0,1]rk
(1 ? Qk)
?
Qk
dx1 · · · dxrk
, ? 0.
Neaanoaea 2.3 Auiieiyaony ?aaainoai Is1,s2,...,sk = Is1,s2,...,sk
(0) = ?e(s1,
s2, . . . , sk).
Aieacaoaeunoai. Yoi ia?aoi?ioee?iaea eaiiu 2.7.
Neaanoaea 2.4 Ionou ana sj 1. Oiaaa auiieiyaony ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 = ?e(2, {1}s1?2, 2, {1}s2?q2, 2, {1}sk?2, 1).
Aieacaoaeunoai. Eiaai ?aaainoai
?
d
d? [Is1,s2,...,sk
(?)]
?=0 =
Z
[0,1]rk
?
ln(1 ? Qk)
Qk
dx1 · · · dxrk
=
Z
[0,1]rk+1
dx0dx1 · · · dxrk
1 ? x0Qk
Aicii?iinou aeooa?aioe?iaaiey ii ia?aiao?o ? aaao ?aaiiia?iay noi-
aeiinou eioaa?aea
Z
[0,1]rk
ln(1 ? Qk)(1 ? Qk)
?
Qk